EE550 Computational Biology

Week 13 Course Notes

Instructor: Bilge Karaçalı, PhD

Topics

- Gene transcription networks
 - Nodes and edges
 - Activation and repression
 - Production rates
 - Hill function
 - Logic approximation
 - Gene transcription transients

Gene Transcription in a Network

- Extracellular signals are received by the membrane
- These signals activate or inhibit certain transcription factors
- The activation or inhibition of the transcription factors trigger or stop the expression of associated genes
- Some gene products go on to affect the activity of transcription factors or act themselves to induce transcription of additional genes

Signal-Based Gene Transcription

- The signal S_X activates the transcription factor X
- The activated transcription factor X^{*} binds the promoter of the gene Y
- Binding of X* to the promoter triggers the expression of gene Y
- The gene product Y is synthesized via the translation of gene Y
- \rightarrow X regulates \check{Y}

Notes:

- 1. This statement refers to a *topological property* of the transcription network
 - → describing the relationship between genes X and Y regardless of whether X has been expressed or not
- 2. The *transient behavior* of Y depends on the presence and activity of X at a given point in time

Graph Representation of Gene Expression Regulation

Activation or Repression of Gene Transcription

- Transcription factors may activate or repress the transcription of a gene
 - In activation, the activity of the regulator leads to the activity of the regulatee
 - Activation is indicated by a pointed arrow
 - In repression, the activity of the regulator leads to the inactivity of the regulatee
 - Repression is indicated by a block
- Chains of activation and repression effects can achieve net activation or net repression of the final gene product by the initial transcription factor

Production Rates of Gene Products

The production rates of gene products can be expressed as a function of active transcription factor concentration

rate of production of $Y = f([X^*])$

- $f(\cdot)$: the input function
- The input function is monotonic
 - increasing if X* activates Y
 - decreasing if X* represses Y
- It is also limited from above and below
 - The rate of production represents an average response of a stochastic process:

X* binds the promoter of gene Y with some probability

- This probability cannot be higher than 1 (limiting factor in activation) or lower than 0 (limiting factor in repression)
 - If the probability is 1, then all promoters of gene Y are continually occupied by X*, and the protein synthesis machinery is at full capacity
 - If the probability is 0, then all promoters of gene Y are free of X*, and no synthesis of the protein Y is taking place

The Hill Function

- For activation: $f^{act}([X^*]) = \beta \frac{[X^*]^n}{\kappa^n + [X^*]^n}$
- For repression: $f^{rep}([X^*]) = \beta \frac{1}{1 + (\frac{[X^*]}{\kappa})^n}$
- κ : activation coefficient
- β : maximal expression rate
- n: Hill coefficient
- Note that $[X^*] = \kappa$ provides 50% activity/repression

$$f(\kappa) = 0.5 \max_{[X^*]} f([X^*])$$

• For genes with non-zero basal expression rate,

 $f([X^*]) \leftarrow f([X^*]) + \beta_0$

EE550 Week 13

Logic Approximation to the Hill Function

- In both activation and repression, the input function crosses the $\beta/2$ level at $[X^*] = \kappa$
- As the function becomes steeper (with increasing *n*) the Hill function approximates a step function:

$$\lim_{n \to \infty} \frac{\beta[X^*]^n}{\kappa^n + [X^*]^n} = \beta u([X^*] - \kappa) = \beta \mathbf{1}([X^*] \ge \kappa)$$
$$\lim_{n \to \infty} \frac{\beta}{1 + \left(\frac{[X^*]}{\kappa}\right)^n} = \beta u(\kappa - [X^*]) = \beta \mathbf{1}([X^*] \le \kappa)$$

where $u(\cdot)$ is the unit step function.

Logic Approximation to the Hill Function

- This logic approximation becomes useful for figuring out how a gene will be regulated by the associated transcription factors
 - For activation:

$$f^{act-app}([X^*]) = \begin{cases} \beta & \text{if } [X^*] \ge \kappa \\ 0 & \text{otherwise} \end{cases}$$

– For repression:

$$f^{rep-app}([X^*]) = \begin{cases} \beta & \text{if } [X^*] \le \kappa \\ 0 & \text{otherwise} \end{cases}$$

Multivariate Input Functions

- Genes may be regulated simultaneously by several transcription factors
- This links the rate of production of a gene product to the concentrations of the associated transcription factors at a given point in time
 - Hence, multivariate input functions:

production rate of $Y = f([X_1^*], [X_2^*], ...)$

- Depending on the precise relationship, these multivariate input functions can be approximated using mathematical expressions – AND, OR, SUM, ...
- The precise shape and form of the input function for each gene continually evolves under selection pressure
 - Neutral or advantageous modifications achieved by the altered molecular machinery
 - Variety ensures adaptability under varying environmental conditions

Multivariate Input Functions

• **AND**: The expression of gene Y requires the binding of both X_1^* and X_2^* to its promoter

production rate of $Y \approx \beta u([X_1^*] - \kappa_1)u([X_2^*] - \kappa_2)$

- **OR**: The binding of either X_1^* or X_2^* to its promoter suffices to trigger the expression of gene Y

production rate of $Y \approx \beta \max\{u([X_1^*] - \kappa_1), u([X_2^*] - \kappa_2)\}$

• **SUM**: The rate of expression of gene Y is related to a linear combination of X_1^* and X_2^* concentrations in the nuclear environment production rate of $Y \approx f(\beta_1[X_1^*] + \beta_2[X_2^*])$

Gene Expression Transients

- The concentration of a given protein in the cell is regulated jointly by
 - the expression of its gene via the associated transcription factors and subsequent synthesis (at rate β)
 - the degradation of the protein (at rate $\alpha_{deg}[Y]$)
 - the dilution due to cell growth (at rate $\alpha_{dil}[Y]$)
- Assuming that the protein product of gene Y is synthesized at full capacity, the rate of change of [Y] in time is given by

$$\frac{d}{dt}([Y])(t) = \beta - \alpha([Y])(t)$$

where $\alpha = \alpha_{deg} + \alpha_{dil}$.

• At steady state, the opposing forces balance each other out at a stable concentration [*Y*]

$$\frac{d}{dt}([Y])(t) = 0 \implies \beta - \alpha[Y]_{st} = 0 \implies [Y]_{st} = \frac{\beta}{\alpha}$$

- In gene activation, at t = 0,
 - the initial value of [Y] is 0
 - the activating transcription factor
- The transient behavior of [Y] is then given by the function

$$([Y])(t) = [Y]_{st}(1 - e^{-\alpha t})$$

for $t \ge 0$.

- This can be seen easily by computing the derivative of ([Y])(t) with respect to t:

$$\frac{d}{dt}([Y])(t) = \frac{d}{dt}([Y]_{st}(1 - e^{-\alpha t}))$$
$$= -[Y]_{st}(-\alpha)e^{-\alpha t}$$
$$= \alpha([Y]_{st} - ([Y])(t))$$
$$= \alpha\left(\frac{\beta}{\alpha} - ([Y])(t)\right)$$
$$= \beta - \alpha([Y])(t)$$

- This suggests:
 - With the activation of gene expression at full capacity, [Y] rises from 0 to the steady state value of $[Y]_{st}$
 - The time it takes to reach half the steady state level is

$$[Y]_{st} \left(1 - e^{-\alpha T_{1/2}} \right) = \frac{[Y]_{st}}{2} \Rightarrow T_{1/2} = \log(2) / \alpha$$

- Hence, the delay (along with the time constant of the exponential rise) is inversely proportional to α (**not** β)
 - Hence the maximal production rate has no bearing on the speed of gene activation
 - Conversely, increasing the production rate will not reduce the delay to the half the steady state level

- Transient graphs for $\alpha_1 < \alpha_2 < \alpha_3$
- Notes:
 - Larger α implies faster rise to the steady state level
 - To maintain the same steady state level with a larger α requires larger β
 - Larger β implies greater investment from the cell's part to the molecular machinery of [Y] protein synthesis
 - → Insensible cycle of rapid protein synthesis and degradation

- $\alpha_1 < \alpha_2 < \alpha_3$
- $\beta_1 < \beta_2 < \beta_3$ such that $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{\alpha_3}$
- Note that faster response is achieved at the expense of greater production and degradation rates
 - So that the same steady state level is maintained

Dynamics of Protein Decay

- Now, suppose the protein product [Y] is initially at the steady state $[Y]_{st}$
- The transient behavior of [Y] after the moment when the gene transcription is turned off (at time t = 0) is given by the function

$$([Y])(t) = [Y]_{st}e^{-\alpha t}$$

for $t \ge 0$.

- Note that turning the gene off means no more production of [Y]
- The differential equation now becomes

$$\frac{d}{dt}([Y]) = -\alpha[Y]$$

- Taking the derivative of ([Y])(t) with respect to t validates the expression $\frac{d}{dt}([Y]_{st}e^{-\alpha t}) = [Y]_{st}(-\alpha)e^{-\alpha t}$ $= -\alpha[Y]_{st}e^{-\alpha t}$ $= -\alpha([Y])(t)$

Dynamics of Protein Decay

- Remarks:
 - The delay in falling from the steady state level to zero is again related to α (and **not** β)
 - The time it takes for the concentration to fall to half the steady state level is again

$$[Y]_{st}e^{-\alpha T_{1/2}} = \frac{[Y]_{st}}{2}$$
$$\Rightarrow T_{1/2} = \log(2) / \alpha$$

Dynamics of Protein Decay

Incorporating the mRNA Dynamics into the Transient Analysis

- The differential equation linking the rate of change of protein Y concentration in time assumes that gene expression directly leads to protein synthesis
- In fact, it bears its own dynamics due to the mRNA transients
 - -mRNA is synthesized and degraded at its own rate
 - -The synthesis of the protein Y is linked to the concentration of Y mRNA in the cytoplasm

Incorporating the mRNA Dynamics into the Transient Analysis

This suggests the alternative rate equation

$$\frac{\alpha}{dt}([Y])(t) = \beta'([Y_{mRNA}])(t) - \alpha([Y])(t)$$

with $[Y_{mRNA}]$ denoting the concentration of Y mRNA, governed by $\frac{d}{dt}([Y_{mRNA}])(t) = \beta_{mRNA} - \alpha_{mRNA}([Y_{mRNA}])(t)$

- At the steady state of Y mRNA,

$$\frac{d}{dt}([Y_{mRNA}])(t) = 0 \Rightarrow [Y_{mRNA}]_{st} = \frac{\beta_{mRNA}}{\alpha_{mRNA}}$$

- Therefore, a more accurate expression for the maximal production rate β of the protein Y is

$$\beta = \frac{\beta' \beta_{mRNA}}{\alpha_{mRNA}}$$

- This holds for $\alpha_{mRNA} \gg \alpha$
 - Y mRNA reaches steady state much faster than Y protein

Incorporating the mRNA Dynamics into the Transient Analysis

- Pseudo code for a numeric solution of the corresponding system of ordinary differential equations
 - Initialization
 - $([Y])(0) = ([Y_{mRNA}])(0) = 0$
 - $\Delta t \ll 1$
 - For $t = 0, \Delta t, 2\Delta t, 3\Delta t, \dots, t_{max}$:
 - Calculate $\frac{d}{dt}([Y])(t)$ using ([Y])(t) and $([Y_{mRNA}])(t)$
 - Calculate $\frac{d}{dt}([Y_{mRNA}])(t)$ using ([Y])(t) and $([Y_{mRNA}])(t)$
 - Set $([Y])(t + \Delta t) = ([Y])(t) + \Delta t \cdot \frac{d}{dt}([Y])(t)$
 - Set $([Y_{mRNA}])(t + \Delta t) = ([Y_{mRNA}])(t) + \Delta t \cdot \frac{d}{dt}([Y_{mRNA}])(t)$

mRNA Dynamics in the Transient Analysis: Activation

mRNA Dynamics in the Transient Analysis: Repression

Remarks

- Transient analysis of protein concentrations can be carried out using a variety of dynamic models
 - Rise or decay for protein concentration through decaying exponentials
 - Incorporating the dynamics of mRNA concentration
 - Incorporating the travel time of mRNA from the nucleus to the Endoplasmic Reticulum
 - Incorporating tRNA concentration changes in the cytoplasm
- In general, each dynamic model possesses its own set of advantages and disadvantages
 - Simplistic models allow easy prediction of system behavior but are not necessarily very accurate
 - Model complexity can be increased by incorporating additional factors for more accurate predictions, at the expense of intuitive understanding

Dynamics of Stable Proteins

• Stable proteins are those that are not actively degraded by the cell

$$\alpha_{\rm deg} = 0 \Rightarrow \alpha = \alpha_{\rm dil}$$

• In the absence of degradation, the concentration drops to its half level at the time of cell division

$$T_{1/2} = \frac{\log(2)}{\alpha_{dil}} = T_{cc}$$
$$\Rightarrow \alpha_{dil} = \frac{\log(2)}{T_{cc}}$$

 T_{cc} : The period of one cell cycle (cell generation time)

- This suggests that response time can be a limiting constraint in the evolutionary design of gene transcription circuits
 - In a case where the response is to be given through non-degraded proteins
 - If the response time exceeds one cell cycle, then the cell cannot hope to respond to the environmental changes in time
 - The faster the response, the better
- Gene transcription networks that develop additional mechanisms to speed up the response time would then gain important selective advantage

Summary

- The response time in simple gene regulation circuits are determined by degradation and dilution rates of proteins
 - This remains true even when the dynamic model complexity is increased
- These response times are generally too large to be practical when responding to environmental inputs such as those on nutrient levels
 - Impossible for stable proteins
 - Cell generation time is about 30min for some bacteria
 - Human cell generation time is about one day
- In actuality, gene transcription networks possess additional mechanisms to reduce the response time without embarking on a futile cycle of rapid protein synthesis and degradation
- ➔ Network motifs in gene transcription networks