EE 549

Biomedical Image Analysis

Instructor: Bilge Karaçalı, PhD

Grading: %20 midterm, %20 final, %30 homework, %30 term project

Material: Course handouts, review papers, internet resources

Class locker: http://www.iyte.edu.tr/~bilgekaracali/EE549

Topics and timeline:

- 1. Overview of histology image data (1 week)
 - a. Preparation of histology slides
 - i. specimen sources
 - ii. cross-sectioning
 - iii. immunohistochemical staining
 - b. Image acquisition
 - i. microscopy basics
 - ii. digitization
- 2. Tissue and region segmentation (2 weeks)
 - a. grayscale segmentation
 - i. intensity histograms
 - ii. parametric thresholding by model fitting
 - iii. nonparametric adaptive thresholding
 - iv. post processing by morphological filters
 - b. color segmentation
 - i. RGB, HSV and Lab color spaces
 - ii. parametric clustering by model fitting
 - iii. nonparametric clustering by k-means
- 3. Detection and morphological characterization of cell nuclei (1 week)
 - a. nuclei detection by segmentation
 - b. nuclei detection by Hough transform
 - c. morphological parameters associated with cell nuclei
- 4. Abnormality detection (1 week)
 - a. Detection of abnormal cell nuclei
 - b. Detection of texture abnormalities
 - i. texture parameters
 - ii. classifier training
- 5. Overview of radiological sequences (1 week)
 - a. Anatomical contrast
 - i. MRI
 - ii. CT
 - iii. Ultrasound
 - b. Functional contrast
 - i. fMRI
 - ii. PET
 - iii. SPECT
- 6. Lesion detection (2 weeks)
 - a. Probabilistic lesion models based on image intensity

- b. Non-parametric methods in lesion detection
- 7. Computational anatomy (3 weeks)
 - a. Anatomical atlases
 - b. Deformable image registration
 - c. Shape representations for morphological analysis
- 8. Comparative group studies (2 weeks)
 - a. Hypothesis-driven analyses
 - b. Hypothesis-free analyses
 - i. Voxel-based morphometry
 - ii. Analyses based on machine-learning
- 9. Computational anatomy in four dimensions (1 week)
 - a. Four-dimensional shape models
 - b. Deformable registration in four dimensions
 - c. Statistical analysis of four-dimensional shape representations