Spring 2011

EE436

Mathematical Foundations of Signal Processing and Control

Syllabus

Meeting times		: Friday 14:30, 15:30, 16:30	
Text		:	
• N. Kolmogorov, S. V. Fomin, "Introductory real analysis," Dover, New York, 1975			
• E. Kreyszig, "Introductory functional analysis with applications," John Wiley & Sons, New			
York, 1989			
Instruc	ctor	: Bilge Karaçalı, PhD	
Office		: EEE Building Room 209	
Phone		: 6719	
E-mail		: bilgekaracali@iyte.edu.tr	

Summary:

Introduction to set theory. Metric spaces. Neighborhood and continuity. Convergence of sequences. Normed vector spaces. Completeness, Banach spaces. Linear operators and functionals. Inner product spaces, Hilbert spaces.

Course Outline:

Week 1: Introduction to set theory: Basics and definitions

- Week 2: Decomposition of a set into classes
- Week 3: Ordered sets and set systems
- Week 4: Metric spaces
- Week 5: Neighborhood and continuity
- Week 6: Convergence, Cauchy sequences and completeness
- Week 7: Midterm
- Week 8: Completion of metric spaces
- Week 9: Vector spaces, normed spaces
- Week 10: Banach spaces
- Week 11: Finite dimensional normed spaces
- Week 12: Linear operators
- Week 13: Inner product spaces, Hilbert spaces
- Week 14: Orthogonal complements and direct sums

Grading:

Homework	30%
Midterm	30%
Final	40%